Computational methods in operations research
 14 February, 2019

In the following exercises, you have to write up an LP/IP model for the given problem. Both the number of variables and number of constraints should be polynomial in the size of the input.

Exercise 1. Given a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ and a vector $a \in \mathbb{R}^{n}$, find a point in P for which
(a) $\|x-a\|_{\infty}:=\max \left|x_{i}-a_{i}\right|$ is minimum;
(b) $\|x-a\|_{1}:=\sum_{i_{1}}^{n}\left|x_{i}-a_{i}\right|$ is minimum.

Exercise 2. Let $P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\} \neq \emptyset$ a bounded polyhedron, and assume that for every $x \in P$ we have $d x+d_{0}>0$ for $d_{0} \in \mathbb{R}^{n}$ and $d_{0} \in \mathbb{R}$. Find an optimum solution for the following problem:

$$
\max \frac{c x+c_{0}}{d x+d_{0}}, x \in P .
$$

Exercise 3. Formalize the traveling salesman problem as an integer program.
Exercise 4. Formalize the maximum cut problem as an integer program.
Exercise 5. We are given an undirected graph $G=(V, E)$, a node $s \in V$ and a weight function $w: E \rightarrow \mathbb{R}$. Two spanning trees are called independent if for every $v \in V$, the two paths from s to v determined by the trees are node-disjoint (apart from s and v, of course). Find a pair of independent spanning trees with minimum total weight.

